Synthesizing Dynamic Programming Algorithms
from Linear Temporal Logic Formulae

Grigore Rosn' and Klaus Havelund?

Research Institate for Advanced Computer Seience
* QSS / Recom Teehnologies
http://ase.arc.nasa.gov/{grosu,havelund}
Automated Software Engineering Group
NASA Anes Research Ceuter
MoHett Field, California, 94033, USA

Abstract. The problem of testing a linear temporal logic (LTL) for-
mula on a finite exccution trace of events, generated by an executing
program. occurs naturally in runtime analysis of software. We present
an algorithm which takes an LTL formula and generates an efficient -
namic programming algorithm. The generated algorithm tests whether
the LTL formula is satisfied by a finite trace of events given as input. The
generated algorithm runs in linear time. its constant depending on the
size of the LTL formula. The memory needed is constant. also depending
on the size of the formula.

1 Introduction

The work presented in this paper is part of an ambitious project at NASA Arues
Research Center, called PATHEXPLORER, that aims at developing a practical
testing environment for NASA software developers. The basic idea of the project
is to exfract an execution trace of a concurrent program and then analyze it to
detect errors. The errors we are considering at this stage are deadlocks, data
races, and non-conformance with linear temporal logic specifications. Only the
later issue is addressed in this paper. i

Linear Temporal Logic (LTL) [17] is a logic for specifying properties of re-
active and concurrent systems. The models of LTL are infinite execution traces,
reflecting the behavior of such systems as ideally always being ready to respond
to requests, operating systems being a typical example. LTL has been mainly
used to specify properties of concurrent and interactive down-sealed models of
real systems, so that fully formal correctness proofs could subsequently be car-
ried out, for example using theorem provers or model checkers (see for example
(12,9]). However, such formal proof techniques are usually not scalable to real
sized systems without a substantial effort to abstract the system more or less
manually to a model which can be analyzed. Model checking of programs has
received an increased attention from the formal methods community within the
last couple of years, and several systems have emerged that can directly model

check sonree code, snch as Tava and O (120 6L 13, L6]. Stateless model check-
ers [20] tey to avoid the abstraction process by not storing states. \thongh
these systems provide high confidence, they seale less well becanse most of their
internal algorithms are NP-complete or worse.

Testing seales well, and is by far the miost used technique in practice to
validare <oftware systems. The merge of resting and temporal logie specification
is anartempt to achieve the benetits of borh approaches, while avoiding sone of
the pitfalls of adhoce testing and rthe complexiry of full-blown theorem proving
and model checking. OF course there is a price to pay in order to obtain a
sealable technigne: the loss of coverage. The suggested framework can only be
nsed to examine single execution traces, and can therefore not he nsed to prove
a system correct. Qur work is based on the belief that software engineers are
willing to trade coverage for scalability, so our goal is to provide tools that are
completely automatic, implement very efficient algorithms and find many errors
in programs. As mentioned previously. the work presented in this paper is part
of larger effort to develop a set of dynamic analysis algorithms and to integrate
these info a single tool named PATHEXPLORER. Of particular additional interest
are for example algorithms that can detect deadlock and data race potentials in
A program. by examining a single arbitrary execution trace of the program. even
though these errors do not occur in that trace. This can be achieved by analvzing
the way locks are acquired and released. A deadlock potential can for example
be detecred by observing that two threads take two locks in different order.
A collection of commereial tools already provide this kind of analysis: Visual
Threads [7]. which uses the Eraser algorithm [18] for detecting data races. and
which works on C and C++ programs using Pthreads: Assure [1]. which works on
C++ programs using Pthreads: and finally Jprobe [19] for Java. In earlier work,
we implemented data race detection and deadlock detection algorithms for Java
in Java PAaTHFINDER [8]. It's our intention to extend this kind of technology by
identifving other error patterns that can be detected this way. A major goal is to
make PATHEXPLORER adjustable to various programming languages and thus
eventually deliver a Java PATHEXPLORER as well as a C++ PaTHEXPLORER
that share the same core algorithms but have different front ends. A longer term
goal is to explore the use of conformance with a formal specification to achieve
fault tolerance. The idea is that the failure may trigger a recovery action in the
monitored program.

Following encouraging results using rewriting-based algorithms [11] imple-
mented in Maude [2]. in this paper we investigate more efficient algorithms for
testing whether finite execution traces conform to LTL formulae. The idea of
using LTL in program testing is not new. It has already been pursued in com-
mercial tools such as TempRover (TR} [5], which has admittedly motivated us
in a major way to start this work. In TR, one states LTL properties as anno-
tations of the program, these being then replaced by appropriate code, that is
executed whenever reached'. Thus, TR can be seen as an extension of a conven-
tional programming language with LTL instructions. Inspired by the MaC [13]

! The implementation details of TR are not public.

roolowe decided to varher antomatieally instriment the hytecode or the olject
code of aprogram to generate events of interest during the exeention. Such an
event-based framework is well snited for program teacing in general, and has
aso been nsed to ddetect race conditions and deadlocks in the Visual Threeads
[T 03] andl Java ParhFinder [8] tools. The trace of events ean then be analyzed
nsing a ditferent tool which can even ran on a ditferent platforn. Oue can also
siwve various exeention traces of 4 program and then have someone else analyze
them at o different time, in adifferent place. We were thos rapidly faced with

the following challenge:

Given a finite execution trace ¢ of events and an LTL formula , how effi-
ciently can one test whether ¢ satisfies ,?

A potential solution would be to translate the formula into an automaton and
then take the synchronized product of the antomaton and the execution trace.
This is for example how Biichi automata are used in explicit-state model checkers
for representing formulae [13.6]. A Biichi automaton is a special automaton
which accepts infinite traces (words): certain states are designated as acceptance
states. and an infinite trace is in the language of the automaton if and only if
it brings the automaton through an acceptance state infinitely ofren. A model
checker can detect such infinite traces by hashing states and detect cveles that
include aceeptance stares. We have decided not to use Biichi awtomata for a

number of reasons.

- First. the translation of LTL formulae to Biichi automata is net trivial,
especially if one strives for small automata. It is worth mentioning that
other similar systems like Temporal Rover [3] and MaC [13] do not use
Biichi automata eirher.

- Sccond. at a semantic level. Biichi automata are interpreted over infinite
traces and it ix not clear how to interpret them on finite traces. Consider for
example a property such as O(p = <Og). the automaton A generated from
the formula, and a finite trace t that, according to the semantics, satisfies the
fornmla. The naive suggestion would be to drive the automaton 4 by ¢ until
the end of the trace. and then observe whether the automaton is in an ac-
ceptance state or not. This will, however, generally not work. In experiments
made using the LTL-to-Biichi automata translator in the SPIN system [13],
such a trace may bring the automaton to a state that is not an acceptance
state. Hence, one can generally not conclude anything from the resulting
state. A potential solution would be to pretend that an infinite sequence of
stuttering transitions is appended to the trace, where a stuttering transition
does not satisfy any proposition. One could then examine whether such a
stuttering sequence would bring the automaton from the state(s) resulting
from the finite trace. through an acceptance state infinitely often. Hence, the
stuttering should be shown to “finish off” the automaton correctly. However,
even though such an interpretation is possible, a different issue is that our
finite trace semantics of the always operator O is different from the infinite
trace semantics implied by Biichi automata.

Thirdo we think thar the dyvnamic progrivuming methodology that W SHrrest
vields iore efficient testing tools tlian ones based on Biichi auttotnata [n fact,
we claine that it is hard. if not impossible, to ind more efficient algorithms
than those presented in this paper.

[spite of their efficiency and eleganee, the generated aluorithis have a
serions drawback: the execution trace needs to be visited Lackwards. This is
atypical phenomenon in dynamie programming algorithims which, taking into
aceonnt the continunously decreasing price of storage media, doesn't seem to be
it practical problem if one wants to first generate the events and then analyze
them. However, we admit that it can be a erneial issue when one wants to analyze
the events as they are generated. warning the programmer of errors or potential
errors while his/her program is being executed. We were not able to find a
dynamic programming algorithm that travels the trace forwards, but we are
confident that it can be done and post it as a challenge for the interested reader,
mentioning that it would have a great impact on testing methodologies and tools.
[t is worth mentioning here that we did find and implement an algorithm that
visits the events in the order they were generated [11], but it is not as efficient
as the dynamic programming algorithms presented in this paper.

We'd like to warmly thank Rance Cleaveland. Dimitra Giannakopoulou and
Willem Visser for interesting and productive technical disenssions directly re-
lated to the effort in this paper. as well as Edmund Clarke. David Dill and
Doron Drusinsky for general disenssions on dynamic analysis of programs and
its potential impact on compnter aided verification.

2 Finite Trace Linear Temporal Logic

We briefly remind the reader the hasic notions of finite trace linear temporal
logic. including a recursive definition of the satisfaction relation between a finite
frace and an LTL formula. The interested reader can check [11] for more on this
subject.

We regard a trace as a finite sequence of events emitted by the program that
we want to observe. Such events could indicate when variables are changed or
when locks are acquired or released. Note that this view s slightly different from
the traditional view where the trace is a sequence of program states, each state
denoting the set of propositions that hold at that state. This view is consistent
with our goal to define an LTL observer as a process that is detached from the
program to be analyzed, receiving only observed events. To keep the presenta-
tion simple and our results general, we abstract away from the concrete contents
of events and just define events as atoms. Similarly, we consider the basic propo-
sitions as simple as possible, also atoms, and say that a proposition a is satisfied
by an event b if and only if a = b. In practice, one should necessarily consider
appropriate notions of satisfaction of propositions by events or states generated
by events. We consider that this is an interesting but too concrete problem de-
pending upon the events that one wants to observe, so we do not approach it

here.

Formulas. Xssume that Prop is o set of atoms, called atomic propositions.
Then Formadais the free extension of Prop under the standard propositional
constants and operators fruwe. folse, =20 V. UA L D= L e L together with
the chssical temporal logic operators o O O and _ I - whose meaning
will be given Later.

Events and Traces. Suppose that Event is aset of events. As we previonsly
mentioned, for the time being we consider that Event = Prop is just a set
of atowms. The set of Hnite traces is Event” which we'll denote Truce, where
e denotes the empty trace. Assume two partial finetions head . Trace ~
Event and tad - Trace = Truce for taking the head and the tail of a trace,
respectively, and a total funcrion length returning the length of a finite trace.
That is. head(e t) = e. ta(e t) = ¢, and length(e) = 0 and length(e t) =
1 + length(t). Assume further for any trace t = e es...e, that t,, for some
natural number 1 < i < n, denotes the suffix trace e;e;;1...e,, that starts at
position /i, and that #,.y = e: if t = e thenn=0and t; =¢.

Satisfaction. The satisfaction relation = C Trace x Formula defines when a
trace £ satisfies a formula 2. written t = . and is defined inductively over
the structure of the formulae as follows, where p € Prop is any atomic
proposition and - and v are any formulae:

t = true is always rrue,

t = false is alwayvs false.

tEp iff t # e and head(t) is p.
tEsv(A = o) e if tE 2 and (or. implies. iff) ¢t = o
oy iff t#eand tail(t) o

tE=ap it (VvI<i<lengthit) t; E o

tE O ff (F1<i<length(t)+ 1)t = .
tE sl v iff (FL<i<length(t)+ 1)t B v and

WI<j<it e

The LTL operators have a slightly different interpretation in the context of finite
traces, though similar in spirit to their standard semantics in classical LTL with
infinite traces. The formula o, (next ») holds for a finite trace iff the trace is
nonempty and > holds in the suffix trace starting in the next (the second) time
point. The formula O, (always) holds if ¢ holds in all time points, while O
(eventually ¢) holds if ¢ holds in present or in some future time point. The
formula » U ¥ (¢ until) holds if ¢ holds in present or in some future time
point, and until then y holds. As an example illustrating the semantics, the
formula Q(, — ©¥') holds for a finite trace iff for any time point in the trace it
holds that if ¢ is true then eventually ¥ is true.

The reader probably noticed that i ranges from 1 to length(n) in the definition
of the semantics of O, while it ranges from 1 to length(n) + 1 in the case of <.
This discrepancy is not a typo; it is because of the intended semantics of the two
operators on the empty trace, that is, ¢ = Og for any formula ¢ while € = Oy
if and only if € = ». We still don't know exactly if this is the most appropriate
semantics of the two operators; it should he taken just as a subjective choice at
this incipient stage, but we are certainly going to clarify this issue soon as we

get more practical experience with this new technology. However, the algorithms
presentedin this paper do not essentially depend on this choice.

Auwimportant observation which is eeneial to the development of the dynamic
programming generie algorithins presented Luter is that the relation E can be
defined recursively in the context of finite traces. We only need to consider the

remporad operators:

FEop i false JetEop iff t =

cEOs istrme LebtEOQy iffetE pand O

cEC, ifel o letES, iffetlE fortE O
fEsUpiffe cetEplHeifetEvor(etEpandtE 2 L),

3 An Example

In this section we show how to generate dynamic programming code for a con-
crete LTL formula. We think that this example would practically be sufficient
for the reader to foresee our general algorithm presented in the next section.

Let T{(p il q) = Olg - or)) be an LTL formula and let P10, e P10 bE
its subformulae. in breadth-first order:

=0{p il) = Olg = or)),

1

Fr ={plq) - Q('r] - orl,
s3 =pld q.

St =0 = or).

5 = P

6 = 4.

F7 =q = or,

F8 =q.

9 = °r,

r10 =T

Given any finite trace ¢ = e es...e, of n events, one can recursively define a
matrix s[1..n +1, 1..10] of boolean values {0.1}. with the meaning that s[i., j] = 1
iff t; =, as follows:

s[i. 10} = (e; == r)

8(i,9] = s[i + 1,10]

Sfi.S] = (e,' == Q)

s[i, 7] = s[i, 8] implies s[i, 9]

s[i.6] = (ei == q)
3(i.3] = (e, ==p)
s(i, 4] = s[i, 7] or sfi + 1, 4]
s{i,3] = s{i,6] or (s[i, 5] and s[i + 1,3))
s[i,2] = si, 3] implies si, 4]
sliv1] = s[i,2] and sfi +1,1],
for all i < n, where and, or, implies are ordinary boolean operations and == is

the equality predicate, where s[n + 1, 1..10] are defined as below:

=10

s[n

+ 1,

S+ L9 =0

sfo+ L8] =0

o+ L7] = s[n + 18] implies sfn + 1,9]
sii+1.6] =0

sfp+1.3] =0

sl + L4 =sn + 1.7]

s+ 1.3] = s{n + 1.6]

sl = 1L2) = sln + L.3] implies s[n + 1, 4]
s{ + 1. 1] = 1.

An important observation is that, like in many other dynamic programming
algorithms. one doesn’t have to store all the table s[1..n + 1, 1..10]. which would
be quite large in practice; in this case, one needs only two lines, $[i.1..10] and
s[i + 1.1..10]. which we'll write now and nert from now on, respectively. It is
now only a simple exercise to write up the following algorithm:

INPUT: trace t = e e3...,

nert{10] + 0;

nertl] — 0;

nert{3] — O

neat{T] — nert[8] implies nest[9]:

nert{0] « 0;

nert]3] « 0:

nert{d] « next7};

next3] « nest(6);

next(2] « nert(3] implies nert[4}:

next[l] « 1;

for /i = n downto 1 do {
nou(10] « (e; == r};
now(9] « nert[lO]
now(8] « (e; == q);
nouw(7] « now(8] implies now[9];
now[6] + (e; == q);
now(3] + (e; == p);
nowl(4] « now(7] or next[4];
now(3] « now(6] or (now(5] and next[3]);
now(2] « now(3] implies now{4];
nou(l] « now(2] and nezt[1);
nert « now }

output(nect[l]);

Given a fixed LTL formula, the analysis of this algorithm is straightforward.
Its time complexity is ©(n) where n is the length of the input trace, the constant
being given by the size of the LTL formula. The memory required is constant,
since the length of the two arrays is the size of the LTL formula. However, one
may want to also include the size of the formula, say m, into the analysis; then

the time complexity is obviously @(n - m) while the memory required is 2 -
bits. The anthors think that its hard to tind an alworithn running faster than

the above in practieal situations.

4 The Main Algorithm

We now formally deseribe our algorithu that synthesizes 2 dvnamie program-
ming algorithm from an LTL formula. Our synthesizer is generie, the potential
user being expected to adapt it to his/her desived tuget langnage. The algorithm
consists of three main steps:

Breadth First Search. The LTL formula should be first visited in breadth-
first order to assign increasing numbers to subformulae as they are visited.
Let 1.2,¢om be the list of all subformulae in BFS order. Because of the
semantics of finite trace LTL, this step insures us that the truth value of
ti | »#j can be completely determined from the truth values of ¢, |= £
for all j < j" < m and the truth values of tiy; E o for all j < j' < m.
This recurrence gives the order in which one should generate the code.

Loop Initialization. Before we generate the “for” loop. we should first ini-
tialize the vector nerf{1..n]. which basically gives the truth values of the
subformulae on the empty trace. According to the semantics of LTL. one
should fill the vector nest backwards. For a given m > j > 1. nert]j] is
caleulated as follows:

- If p; is a variable then nert[j] = 0. Notice that .5, is always a variable.
In a more complex setting of LTL. containing more complex propositions
than just propositional variables, one would have to evaluate #j in the
context of the empty trace or of the final state generated by the trace of
events;

- If v is =y for some j < j' <, then nect[j] = not nert[j']. where not
is the negation operation on booleans (bits);

= I pjis 2, Op py, forsome j < ji, ja < m, then neet(j] = nert[ji] op nert]js].
where Op is any propositional operation and op is its corresponding
hoolean opetation;

= If @; is op then clearly nert]j] = 0 according to the semantics of finite
trace LTL;

- If pj is Opj then nert[j] = 1 because the empty trace satisfies “always”
everything:

= If pj is Oy then nert[j] = nert[j'] because there are no further events
that could make 2 hold in the future: it must hold now;

= IFwjis 2 U ¢, for some j < ji. jo < m, then nert]j] = nert]j2] for the
same reason as above.

Loop Generation. Because of the dependences in the recursive definition of
finite trace LTL satisfaction relation, one is expected to visit the trace back-
wards, so the loop index will vary from n downto 1. The loop body will
update/calculate the vector now and in the end will move it into the vector
necrt to serve as basis for the next iteration. At a certain iteration i, the
vector now is updated also backwards as follows:

= If p, is a variable rhen nowlj] only depends on the event ¢, In our
simpliticd version of UTL, now(f] is Uif and only if ¢, = ;- ln a more
complex Huite trace LTL where ¥ Was v proposition, one would be
expected to evalnate 2 in acstate at moment J.

= Iy, s =2 for some j < j < then now(y] = not nowfj':

=2y is 2 Op gy for j < i jy < m. then nowlj] = nou(j,] op nowfja].
where Op s any propositional operation and op is its corresponding
boolean operation;

= Ity ixop . then noulj] = newt)'] sinee 2 holds now if and only if 5
hold at the previous step (which treated the next event. the i + 1-th):

= If 2, is Oy then now(j} = now(;'] and nert[j] because ; holds now if
and only if 5 holds now and ; hold at the previous iteration:

= If p, is O, then nou(j] = now{;'] or next{j] because of similar reasons
as above;

= If 2jis @j, U 2, for some j < ji.ja < m, then because of the recursion
at the end of Section 2. now(j] = nouljs] or (nouf},] and nert[j]).

After each iteration /. nerf[1] tells whether the initial LTL formula is validated
by the trace e,e;.;...e,. Therefore. the desired output is nert{l] after the last
iteration. Putting all the above together. one can now write up the generic pseu-
docode presented i the appendix which can be implemented very efficiently on
any current platforni. Since the BFS procedure is linear. the algorithm synthe-
sizes a dynamic programming algorithm from an LTL formula in linear time
with the size of the formmula.

References

[V]

Kuck & Associates. Assure, 2000. http://wuv.kai.com/parallel/assuret.
Manuel Clavel, Francisco J. Durin. Steven Eker, Patrick Lincoln, Narciso Marti-
Oliet, José Meseguer, and José F. Quesada. Maude: Specification and Pro-
gramuming in Rewriting Logic, March 1999. Maude System documentation at
http://maude.csl.sri.com/papers.

James Corbett, Matthew B. Dwyer, John Hatcliff, Corina S. Pasareanu, Robby,
Shawn Laubach, and Hongjun Zheng. Bandera : Extracting Finite-state Models
from Java Source Code. In Proceedings of the 29nd International Conference on
Software Engineering. Limerich, Ireland, June 2000. ACM Press.

Claudio Demartini. Radu Tosif, and Riccardo Sisto. A Deadlock Detection Tool
for Concurrent Java Programs. Software Practice and Ecrperience, 29(7):577-603,
July 1999.

Doron Drusinsky. The Temporal Rover and the ATG Rover. In Klaus Havelund,
John Penix, and Willem Visser, editors, SPIN Model Checking and Software Ver-
ification, volume 18835 of Lecture Notes in Computer Science, pages 323-330.
Springer, 2000.

Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple On-the-fly Au-
tomatic Verification of Linear Temporal Logic. In Proceedings of the 15th Workshop
on Protocol Specification, Testing, and Verification. North-Holland, 1095,

10.

1L

13.

4.

16.

18.

19.
20.

ferrv Havrow. Runtiie Checking of Multithreaded Applications with Vi
sual - Threads. fn Klns Havelund., John Penix. and Willem Visser,
editors. SPIN . Model Checkang and Softarar Verifteataon, volume 1885
of Lecture Notes w0 Compuber Seienee, pages 331 3420 Springer. 2000,
http://uuw5. compaq.com/products/softvare/visualthreads.

Klans Havelund. Using Runtime Analysis to Guide Model Checking of Java Pro-
grins. I Klaus Havelund, John Penix, and Willem Visser. editors. SPIV Model
Checking and Software Verafication, volume 1885 of Lecture Notes ur Comnputer
Serener, pages 243 -26-L Springer, 2000.

Klaus Havelund. Michael R. Lowry, and John Penix. Formal Analysis of a Space
Craft Controller using SPIN. In Proceedings of the fth SPIN workshop. Paris.
France, November 1993. To appear in IEEE Transactions of Software Engineering.
Klaus Havelund and Thomas Pressburger. Model Checking Java Programs using
Java PathFinder. International Journal on Software Tools for Technology Transfer,
2(4):366-381, April 2000. Special issue of STTT containing selected submissions
to the {th SPIN workshop. Paris, France, 1998.

Klaus Havelund and Grigore Rogn. Testing linear temporal logic for-
mulae on finite execution traces, 2000. Submitted for publication.
http://ase.arc.nasa.gov/people/grosu.

Klaus Havelund and Natarajan Shankar. Experiments in Theorem Proving and

Model Checking for Protocol Verification. In Marie Claide Gaudel and Jim Woorl-

cock. editors, FME 96: Industrial Benefit and Adrances in Formal Methods, volume
1051 of Lecture Nutes in Computer Science, pages 662-681. Springer. 1996.
Gerard J. Holzmann. The Model Checker SPIN. [EEE Trunsactions on Soft-
ware Engineering. 23(5):279-293. May 1997, Special issne on Formal Methods in
Software Practice.

Gerard J. Holzmann and Margaret H. Smith. A Practical Method for Verifving
Event-Driven Software. In Proceedings of [CSE 99. International Conference on
Software Engineering. Los Angeles, California, USA, May 1099. IEEE/ACM.
Insup Lee, Sampath Kannan. Moonjoo Kim. Oleg Sokolskv, and Mahesh
Viswanathan. Runtime Assurance Based on Formal Specifications. In Proceedings
of the International Conference on Parallel and Distributed Processing Techniques
and Applications, 1099.

David Y.W. Park. Urlich Stern. and David L. Dill. Java Model Checking. In
Proccedings of the First International Workshop on Autuomated Program Analysis,
Testing and Verification, Limerick, Ireland, June 2000.

. Amir Pnueli. The temporal logic of programs. In Proceedings of the 1Sth IEEE

Symposium on Foundations of Computer Science, pages 46-77, 1977.

Stefan Savage, Michael Burrows, Greg Nelson, Patrik Sobalvarro, and Thomas
Anderson. Eraser: A Dynamic Data Race Detector for Multithreaded Programs.
ACM Transactions on Computer Systems, 15(4):391-411, November 1997
Sitraka Software. Jprobe, 2000. http://www.sitraka.com/softvare/jprobe.
Scott D. Stoller. Model-Checking Multi-threaded Distributed Java Programs. In
Klaus Havelund, John Penix, and Willem Visser, editors, SPIN Model Checking
and Software Verification, volume 1885 of Lecture Notes in Computer Science,
pages 224-244. Springer, 2000.

- Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model

Checking Programs. In Proceedings of ASE'2000: The 15th [EEE International
Conference on Automated Software Engineering. IEEE CS Press, September 2000.

A Generic Pseudocode for the Synthesizer

The following generie program implements the technicpe disenssed in the paper.
It takes as input an UTL formula and generates a for loop which traverses the
rrace of events hackwards, thas validating or invalidating the formmnla.

Ixeer: LTL formula
output{ "INPUT: trace t = ejea.p,");
et 2iopac 2w be all the subformulae of - is BFS order
for j = m downto | do {
output(“next{”, j.] ~ ")
if ;2; is a variable then output(*0;");
if oj = ~pj then output(“not next[".j', “|;");
if oj =, Op yj, then output(“nezt[" j,,] op next[”, ja, *;"):
if »; = oy then output(“0;");
if ; = O, then output(~1:"):
if pj = Oy then output(“nest[".j'.]:"):
if 2 =2, U pj, then output(“nert[".jo, “]:"): }
output(“for i = n downto 1 do {"}):
for j = m downto 1 do {
output(- nowf". j. "] & ")
if >; is a variable then output(-(e; ==", TN &
if »; = =p, then output(“not now{".j’. “J:"):
if 7, =y, Op ;j, then output(~nou" j,. *Jop now[". ja.]:"):
if 2j = o, then output(“nert". j/. *]:"):
if 2 = Oy then output(“nouf". j/. *] and nert]". j. *]:"):
if ;= Oy then output(“nou{". j'.] or next[". j. *]:");
if 2; = @, Ul zj, then output(“nou(". j».] or (nouf”. ji. *] and
nert[”. j.)" }
output(* nest & now; }):
output(“output nert[l];"):

where Op is any propositional connective and op is its corresponding boolean
operator.

The boolean operations used above are usually very efficiently implemented
on any microprocessor and the vectors of bits nezt and now are small enough to
be kept in cache. Moreover, the dependencies between instructions in the gener-
ated “for” loop are simple to analyze, so a reasonable compiler can easily unfold
or/and parallelize it to take advantage of machine’s resources. Consequently, the
generated code is expected to run very fast.

